

in

Zhenit Project

Zero waste Heat vessel towards relevant ENergy savings also thanks to IT technologies

PROJECT

In 2018 the International Maritime Organisation – IMO – released a directive to target the 50% reduction of greenhouse gas - GHG - emissions due to international maritime transport by the 2050, by boosting the maritime logistic sector to be more sustainable.

The ZHENIT project develops a strategy that contributes to decarbonise the maritime transport by using innovative Waste Heat Recovery – WHR – solutions, already available for terrestrial and maritime applications, to be exploited more extensively onboard to reduce pollutants also in hoteling/harbour conditions.

Furthermore, ZHENIT combines the WHR solutions with ICT monitoring and energy management solutions, thermal energy storage and a hybrid propulsion system aiming to reduce ship emissions both in harbour area and open sea. ZHENIT will prove the capabilities of different WH-to-X solutions and their key role for shipping sector by validating on board of a pilot cargo vessel and in laboratory conditions.

4.4M Funding

AMBITION

ZHENIT aims to promote WHR as key and "ready-to-scale up" solutions to reach the decarbonization targets by validating different systems at various temperature levels, for different end-product (cooling, power, desalination) and optimizing integration/performance thanks to Thermal Energy Storage (TES). ZHENIT valorizes WH via different WH-to-X solutions:

- WH-to-Trigeneration via innovative recuperated ORC integrated with a HP with ejector (T>100°C)
- WH-to-Cooling and Desalination via an adsorption system (70<T<100°C)

• WH-to-MechanicalWork(e.g.forfuelcompression)viaanisobaricexpansion(IE)engine(T<100°C) These solutions straight forward to making the shipping sector more sustainable, accessible and clean.

FUNDAMENTALS

- T<100°C

Isobaric Expansion (IE) Engine WH-to-mechanical work

70°C<T>100°C

Adsorption System WH-to-cooling and Desalination Innovative ORC integrated with HP with ejector WH-to-Trigeneration

INTEGRATED CONTROL FOR WHR MAXIMISATION

HYBRID PROPULSION (WINGSAIL)

ON-BOARD ADVANCED MONITORING THERMAL ENERGY STORAGE (TES) FOR OPTIMAL WHR

www.zhenit.eu

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101056801